
ecmwf.doc submitted to World Scientific : 4/23/01 : 8:51 AM 1/18

THE SCALABLE MODELING SYSTEM:
A HIGH-LEVEL ALTERNATIVE TO MPI

M. GOVETT, J. MIDDLECOFF, L. HART, T. HENDERSON*, AND D.SCHAFFER*

NOAA/OAR/Forecast Systems Laboratory

325 Broadway, Boulder, Colorado 80305-3328 USA
Email: govett@fsl.noaa.gov

*[In collaboration with the Cooperative Institute for Research in the

Atmosphere, Colorado State University, Ft. Collins, Colorado 80523 USA]

A directive-based parallelization tool called the Scalable Modeling System (SMS) is
described. The user inserts directives in the form of comments into existing Fortran code.
SMS translates the code and directives into a parallel version that runs efficiently on both
shared and distributed memory high-performance computing platforms. SMS provides tools
to support partial parallelization and debugging that significantly decreases code
parallelization time. The performance of an SMS parallelized version of the Eta model is
compared to the operational version running at the National Centers for Environmental
Prediction (NCEP).

1 Introduction

Both hardware and software of high-end supercomputers have evolved significantly
in the last decade. Computers quickly become obsolete; typically a new generation
is introduced every two to four years. New systems utilize the latest advancements
in computer architecture and hardware technology. Massively Parallel Processing
(MPP) computers now comprise a wide range and class of systems including fully
distributed systems, fully shared memory systems called Symmetric Multi-
Processors (SMPs) containing up to 256 or more CPU's, and a new class of hybrid
systems that connect multiple SMPs using some form of high speed network.
Commodity-based systems have emerged as an attractive alternative to proprietary
systems due to their superior price performance and to the increasing adoption of
hardware and software standards by the industry. Programming on these diverse
systems offer many performance benefits and programming challenges.

The primary mission of the National Oceanic and Atmospheric Administration's
(NOAA's) Forecast Systems Laboratory (FSL) is to transfer atmospheric science
technologies to operational agencies within NOAA, such as the National Weather
Service, and to others outside the agency. Recognizing the importance of MPP
technologies, FSL has been using these systems to run weather and climate models
since 1990. In 1992 FSL used a 208 node Intel Paragon to produce weather

mailto:govett@fsl.noaa.gov

ecmwf.doc submitted to World Scientific : 4/23/01 : 8:51 AM 2/18

forecasts in real-time using a 60km version of the Rapid Update Cycle (RUC)
model. This was the first time anyone had produced operational forecasts in real
time using a MPP class system. Since then, FSL has parallelized several weather
and ocean models including the Global Forecast System (GFS) and the Typhoon
Forecast System (TFS) for the Central Weather Bureau in Taiwan [15], the Rutgers
University Regional Ocean Modeling System (ROMS) [8], the National Centers for
Environmental Prediction (NCEP) 32 km Eta model [17], the high resolution
limited area Quasi Non-hydrostatic (QNH) model [16], and FSL’s 40 km Rapid
Update Cycle (RUC) model currently running operationally at NCEP [2].

Central to FSL’s success with MPPs has been the development of the Scalable
Modeling System (SMS). SMS is directive-based parallelization tool that translates
Fortran code into a parallel version that runs efficiently on both shared and
distributed memory systems. SMS was designed to reduce the effort and time
required to parallelize models targeted for MPPs, provide good performance, and
allow models to be ported between systems without code change. Further,
directive-based SMS parallelization requires no changes to the original serial code.

The rest of this paper describes SMS in more detail. Section 2 introduces several
approaches to code parallelization, followed by an overview of SMS in Section 3.
Section 4 describes the flexibility and simplicity of code parallelization using SMS
and explains how this tool has significantly decreased code parallelization time.
Section 5 describes several performance optimizations available in SMS and
compares the performance of NCEP’s operational Eta code with the SMS
parallelized Eta. Finally, Section 6 concludes and highlights some additional work
that is planned.

2 Approaches to Parallelization

In the past decade, several distinct approaches have been used to parallelize serial
codes.

Directive-based Micro-tasking – This approach was used by companies such as
Cray and SGI to support loop level shared memory parallelization. A standard for
such a set of directives called OpenMP, has recently become accepted in the
community. OpenMP can be used to quickly produce parallel code, with minimal
impact on the serial version. However, OpenMP does not work for distributed
memory architectures.

Message Passing Libraries - Message-passing libraries such as Message Passing
Interface (MPI), represents an approach suitable for shared or distributed memory
architectures. Although the scalability of parallel codes using these libraries can be
quite good, the MPI libraries are relatively low-level and can require the modeler to

ecmwf.doc submitted to World Scientific : 4/23/01 : 8:51 AM 3/18

expend a significant amount of effort to parallelize their code. Further, the resulting
code may differ substantially from the original serial version; code restructuring is
often desirable or necessary. One notable example of this strategy is the Weather
Research and Forecast (WRF) model which was designed to limit the impact of
parallelization and parallel code maintenance by confining MPI-based
communications calls into a minimal set of model routines called the mediation
layer [20].

Parallelizing Compilers – These solutions offer the ability to automatically produce
a parallel code that is portable to shared and distributed memory machines. The
compiler does the dependence analysis and offers the user directives and/or
language extensions that reduce the development time and the impact on the serial
code. The most notable example of a parallelizing compiler is High Performance
Fortran (HPF). In some cases the resulting parallel code is quite efficient [23], but
there are also deficiencies in this approach. Compilers are often forced to make
conservative assumptions about data dependence relationships, which impact
performance [13]. In addition, weak compiler implementations by some vendors
result in widely varying performance across systems [4, 21].

Interactive Parallelization Tools - One interactive parallelization tool, called the
Parallelization Agent, automates the tedious and time-consuming tasks while
requiring the user to provide the high-level algorithmic details [14]. Another tool,
called the Computer-Aided Parallelization Tool (CAPTools), attempts a
comprehensive dependence analysis [13]. This tool is highly interactive, querying
the user for both high level information (decomposition strategy) and lower level
details such as loop dependencies and ranges that variables can take. While these
tools offers the possibility of a quality parallel solution in a fraction of the time
required to analyze dependencies and generate code by hand, limitations exist in
their ability to offer efficient code parallelization of NWP codes that contain more
advanced features (e.g. nesting, spectral transformations, and Fortran 90 constructs).

Library-Based Tools – Library-based tools, such as the Runtime System Library
(RSL) [18] and FSL’s Nearest Neighbor Tool (NNT) [22], are built on top of the
lower level libraries and serve to relieve the programmer of handling many of the
details of message passing programming. Performance optimizations can be added
to these libraries that target specific machine architectures. Unlike computer-aided
parallelization tools such as CAPTools, however, the user is still required to do all
dependence analysis by hand.

In simplifying the parallel code, these high level libraries also reduce the impact to
the original serial version. Parallelization is still time consuming and invasive,
since code must be inserted by hand and multiple versions must be maintained.
Source translation tools have been developed to help modify these codes

ecmwf.doc submitted to World Scientific : 4/23/01 : 8:51 AM 4/18

automatically. One such tool, the Fortran Loop and Index Converter (FLIC),
generates calls to the RSL library based on command line arguments that identify
decomposed arrays and loops needing transformations [19]. While useful, this tool
has limited capabilities. For example, it was not designed to handle multiple data
decompositions, interprocessor communications, or nested models.

Another tool of this type, and the topic of this paper, is a directive-based source
translation tool that is a new addition to SMS called the Parallel Pre-Processor
(PPP). The programmer inserts the directives (as comments) directly into the
Fortran serial code. PPP then translates the directives and serial code into a parallel
version that runs on shared and distributed memory machines. Since the
programmer adds only comments to the code, there is no impact to the serial
version. Further, SMS hides enough of the details of parallelism to significantly
reduce the coding and testing time compared to an MPI-based solution.

3 Overview of SMS

SMS consists of two layers built on top of the Message Passing Interface (MPI)
software. The highest layer is a component called the PPP, which is a Fortran code
analysis and translation tool built using the Eli compiler construction software [7].
PPP analysis ensures consistency between the serial code and the user-inserted SMS
parallelization directives. After analysis, PPP translates the directives and serial
code into a parallel version of the code.

In addition to loop translations, array re-declarations, and other code modifications,
the parallel version contains PPP generated calls to SMS library-based routines in
the Nearest Neighbor Tool (NNT), Scalable Spectral Tool (SST) and Scalable
Runtime System (SRS) shown in the Figure 1. NNT is a set of high-level library
routines that address parallel coding issues such as data decomposition, halo region
updates and loop translations [22]. SRS provides support for input and output of
decomposed data [9]. SST is a set of library routines that support parallelization of
spectral atmospheric models. These libraries rely on MPI routines to implement the
lowest layered functionality required.

ecmwf.doc submitted to World Scientific : 4/23/01 : 8:51 AM 5/18

Figure 1. Functional diagram of the layers of SMS that are built on top of MPI

Early versions of SMS did not contain the highest level PPP layer. Instead, model
parallelization was accomplished by inserting NNT, SST and SRS library calls
directly into the parallel code. While a number of models were successfully
parallelized using this method, the serial and parallel versions of the code were
distinctly different and had to be maintained separately [3,1,10]. Conversely,
directive-based parallelization permits the modeler to maintain a single source code
capable of running on a serial or parallel system. Modelers are able to test new
ideas on their desktop, yet can easily generate parallel code using PPP when faster
runs on an MPP are desired. Figure 2 illustrates code parallelization using SMS
directives and PPP to generate the parallel code.

THE SCALABLE MODELING
SYSTEM (SMS)

NNT SRS

PPP

SST

MPI

ecmwf.doc submitted to World Scientific : 4/23/01 : 8:51 AM 6/18

Add SMS
Directives

Code Parallelization using SMS

SMS Serial
Code

SMS
Parallel
Code

Original
SerialCode

PPP
Parallel Pre-Processor

Serial
Executable

Parallel
Executable

Figure 2. SMS directives are added to the original serial code during code parallelization. The
SMS serial code can then be run serially as before, or parallelized using PPP to generate an MPP-
ready parallel code.

To simplify the user's interface to parallelization, the number of directives available
in the SMS toolkit is minimized. Currently 20 SMS directives are available to
handle parallel operations including data decomposition, communication, local and
global address translation, I/O, spectral transformations and nesting [5]. Further,
when PPP translates the code into its parallel form, it changes only those lines of
code that must be modified; the rest of the serial code including comments and
white space remain untouched.

Another advantage of this approach is that directives serve to abstract the lower
level details of parallelization that are required to accomplish complicated
operations including interprocess communication, process synchronization, and
parallel I/O. An illustration of an SMS abstraction is the use of a high-level data
structure, called a decomposition handle, which defines a template that describes
how data will be distributed among the processors. Two SMS directives are

ecmwf.doc submitted to World Scientific : 4/23/01 : 8:51 AM 7/18

required to declare and initialize the user-specified data decomposition structure
(csms$declare_decomp and csms$create_decomp). A layout directive
(csms$distribute) is then used to associate arrays with this data decomposition.

Once data layout has been defined, the user does not need to be concerned with how
data are distributed to the processors or how data will be communicated - SMS
handles these low-level details automatically. SMS retains all information
necessary to access, communicate, input and output decomposed and non-
decomposed arrays through the use of the user-specified decomposition handle.

For example, to update the halo (ghost) region of arrays x and y between
neighboring processors, the user is only required to insert

 csms$exchange(x, y)

into the serial code at the appropriate place. SMS automatically generates code to
store information about each variable to be exchanged (global sizes, halo thickness,
decomposition type, data type), and then perform the communications necessary to
update the halo points of each process. Using the information contained in the
decomposition handle, SMS determines how much of the halo region each process
must be exchanged, where the information must go, and where it should be stored.
Process synchronization is also handled by SMS for these communication
operations.

Using this encapsulation strategy other communication operations, including
reductions (csms$reduce), transferring data between decompositions
(csms$transfer), and the gather and scatter of decomposed data (csms$serial)
between global and decomposed arrays are easily handled at the directive level.
Further, input and output of data to or from disk require no SMS directives or any
special treatment by the user.

Figure 3 shows an example of an SMS program in which the decomposition handle
my_dh is declared (line 3) and then referenced by directive (csms$distribute: lines 5,
9) to associate the first array dimension with the first dimension of the
decomposition for the arrays x and y. Once the data layout has been specified via
directive, SMS handles all the details required for halo updates (csms$exchange:
line 19), reductions (csms$reduce: line 27), and I/O operations (no directives
required).

Once SMS understands how arrays are decomposed, parallelization becomes
primarily an issue of where in the code the user wishes to perform communications
and not how data will be moved to accomplish these operations. The user is still
required to determine by dependence analysis where communication is required in

ecmwf.doc submitted to World Scientific : 4/23/01 : 8:51 AM 8/18

their code, but a single directive is generally all that is required once this
information is known. Further information about the use of SMS directives is
available in the SMS User’s Guide [11].

Code with SMS Directives
1: program DYNAMIC_MEMORY_EXAMPLE
2: parameter(IM = 15)
3: CSMS$DECLARE_DECOMP(my_dh)
4:
5: CSMS$DISTRIBUTE(my_dh, 1) BEGIN
6: real, allocatable :: x(:)
7: real, allocatable :: y(:)
8: real xsum
9: CSMS$DISTRIBUTE END

10: CSMS$CREATE_DECOMP (my_dh, <IM>, <2>)

11: allocate(x(im))
12: allocate(y(im))
13: open (10, file = 'x_in.dat', form='unformatted')
14: read (10) x

15: CSMS$PARALLEL(my_dh, <i>) BEGIN
16: do 100 i = 3, 13
17: y(i) = x(i) - x(i-1) - x(i+1) - x(i-2) - x(i+2)
18: 100 continue
19: CSMS$EXCHANGE(y)
20: do 200 i = 3, 13
21: x(i) = y(i) + y(i-1) + y(i+1) + y(i-2) + y(i+2)
22: 200 continue
23: xsum = 0.0
24: do 300 i = 1, 15
25: xsum = xsum + x(i)
26: 300 continue
27: CSMS$REDUCE(xsum, SUM)
28: CSMS$PARALLEL END
29: print *,'xsum = ',xsum
30: end

Figure 3. SMS directives are used to map sub-sections of the arrays x and y to the decomposition given
by “my_dh”. Each process executes on its portion of these decomposed arrays in the parallel region
given by csms$parallel.

Alternatively, when an operation such as a halo update is done with MPI, either
each variable is exchanged separately, or in some cases, multiple arrays can be
exchanged at the same time using an MPI-derived type or common block. In
addition, the programmer must determine its neighbors and decide if
communication is required. While not a difficult operation, it can be a tedious and
time-consuming endeavor. One example of this complexity can be found in the Eta

ecmwf.doc submitted to World Scientific : 4/23/01 : 8:51 AM 9/18

code where a key communications routine containing over 100 lines of code was
replaced with a single exchange directive during SMS parallelization.

4 Code Parallelization using SMS

The parallelization of codes targeted for MPPs can be a difficult and time-
consuming process. The objective in developing SMS was to design a tool that is
easy to learn and use, and to provide support for operations that simplify and speed-
up code parallelization. This section highlights some of the features of SMS that
have been developed to achieve these goals.

4.1 Code Generation and Run-Time Options

SMS control over the generation and execution of code can be divided into three
areas: parallelization directives, command line options, and run-time environment
variables. SMS directives, discussed in Section 3, are the most obvious way to
control when, where and how code parallelization should be done.

SMS also provides the user with command line options to modify code translation.
User access to parallel code generation using PPP is provided through a script that
runs a series of executables to transform the serial code. Several command line
options are available in this script that affect parallel code generation including type
promotion (eg. --r8), retain translated code as comments, and a verbose level to
warn of inconsistencies encountered during translation.

Users can also control the run-time behavior of SMS parallel code using
environment variables. Environment variables are used to control when sections of
PPP- translated user code will be executed. For example, conditional execution of
generated code is used to verify the correctness of a parallelization where global
sums are required, and for debugging purposes. This allows users to debug and
verify parallelization without requiring that code be re-generated after correctness of
results is established (discussed below).

Environment variables are also used to control the run-time behavior of SMS to:
configure the layout of processors to the problem domain, designate the number of
processors used to output decomposed arrays to disk, determine the type of
input/output files that will be read/written (MPI-I/O, Native I/O, parallel file output,
etc.), and tune model performance.

ecmwf.doc submitted to World Scientific : 4/23/01 : 8:51 AM 10/18

4.2 Advanced Parallelization Support

There are three phases to any code parallelization effort: code analysis, code
parallelization, and debugging. Code analysis generally involves finding data
dependencies that exist in the code, and based on this information, determining a
data decomposition and parallelization strategy. SMS does not currently offer user
support for code analysis; however, plans to provide this capability will be
discussed in Section 6.

Code Parallelization - SMS provides support for simplifying code parallelization.
Recognizing that code parallelization becomes simpler to test and debug when it can
be done in a step-wise fashion, the user can insert directives to control when
sections of code will be executed serially (csms$serial). Serial regions are
implemented by gathering all decomposed arrays, executing the code segment on a
single node, then scattering the results back to each processors sub-region as
illustrated in Figure 4. In this example, the routine not_parallel executes on a
single node referencing global arrays that have been gathered by the appropriate
SMS routines.

While the extra communications required to implement gather or scatter operations
will slow performance, this directive permits users to test the correctness of
parallelization during intermediate steps. Once assured of correct results, the user
can remove these serial regions and further parallelize their code. This directive
has also been useful in handling sections of code where no SMS support for
parallelization is currently available such as NetCDF I/O. Further, if adequate
performance is attained, some sections of code can be left unparallelized.

Debugging - Once SMS directives have been added to the serial source, the parallel
code must be run to verify the correctness of parallelization. To ensure correctness,
output files should be examined to verify that the results are exactly the same for
serial and parallel runs of the code. Since summation is not associative, reductions
may not lead to exactly the same results on different numbers of processors. To
alleviate this inconsistency, SMS provides a bit-wise exact reduction capability
which performs exactly the same arithmetic operations that would be executed in
the serial program. This capability is particularly useful when the reduction
variables feed back into model fields that are output or compared. Bit-wise exact
results also permit the user to verify results exactly against the serial version and
ensure the accuracy and correctness of the parallelization effort.

Building on the bit-wise exact reduction capability, two SMS directives have been
developed to support debugging that have significantly streamlined model
parallelization, reduced debugging time, and simplified code maintenance. The first
directive, csms$check_halo, permits the user to verify that halo region values are up
to date. Using this directive, the halo region values of each user-specified array is

ecmwf.doc submitted to World Scientific : 4/23/01 : 8:51 AM 11/18

compared with their corresponding interior points on the neighboring process. If
these values differ, SMS will output the differences and exit. This information
helps determine where an exchange or halo update may be required to ensure
correctness.

Incremental Parallelization

“global” “local”

“local” “global”

CALL NOT_PARALLEL(...)

SMS Directive: CSMS$SERIAL

Figure 4. An illustration of SMS support for incremental parallelization. Prior to execution of the serial
region of code, decomposed arrays are gathered into global arrays, referenced by the serial section of
code, and then results are scattered back out to the processors at the end of the serial region.

The second debug directive, csms$compare_var, provides the ability to compare
array values for model runs using different numbers of processors. For example,
the programmer can specify a comparison of the array “x”, for a single processor
run and for multiple processors by inserting the directive:

csms$compare_var (x)

in the code and then entering appropriate command line arguments to request
concurrent execution of the code. The command:

 smsRun 1 mycode 2 mycode

ecmwf.doc submitted to World Scientific : 4/23/01 : 8:51 AM 12/18

will run concurrent images of the executable mycode for 1 and 2 processors.
Wherever csms$compare_var directives appear in the code, user-specified arrays
will be compared. If differences are found SMS will display the name of the
variable (x for example), the array location (e.g. the i, j, k index) and the
corresponding values from each run, and then terminate execution.

The ability to compare intermediate model values anywhere in the code has proven
to be a powerful debugging tool during code parallelization. The effort required to
debug and test a recent code parallelization was reduced from an estimated eight
weeks down to two simply because the programmer did not have to spend
inordinate amounts of time determining where the parallelization mistakes were
made.

Additionally, this directive has proven to be a useful way to ensure that model
upgrades continue to produce the correct results. For example, after making
changes to serial code the modeler executes the debug sections of code (generated
by csms$compare_var), controlled through a command line option, in order to
verify that the intermediate results are still correct. By allowing the programmer to
test parallelization in this way, code maintenance becomes much simpler for
everyone.

5 Performance and Portability

As stated in the introduction, SMS has been used to successfully parallelize a
number of mesoscale and global forecast models. These models have demonstrated
good performance and scaling on a variety of computing platforms including IBM
SP, Intel Paragon, Cray T3E, SGI Origin, and Alpha-Linux clusters. This section
details some of the portability and performance optimizations available with SMS
and then highlights some results of a recent comparison for the operational Eta
model.

5.1 SMS Optimizations

Model performance can vary significantly depending on the hardware and
architecture of the target system and the run-time characteristics of the code.
Architectural differences affecting performance include processor speed, the access
times and size of each type of memory (register, cache, main memory), bandwidth
of the communication pathways, and speed of peripherals such as disks [12].
Issues that affect model performance include the compiler implementation, size and
frequency of I/O operations, frequency and type of interprocessor communications,
and data locality. SMS has been designed so that models can be ported between

ecmwf.doc submitted to World Scientific : 4/23/01 : 8:51 AM 13/18

systems without code change, to both run efficiently across shared and distributed
memory systems and to provide options that tune the model for the best
performance.

Portability has become increasingly important both because high-end computer
system hardware changes frequently and because codes are often shared between
researchers who run their models on different systems. To ensure portability across
shared and distributed memory systems, SMS assumes that memory is distributed;
no processor can address memory belonging to another processor. Despite the
assumption that memory is distributed, the performance on shared memory
architectures is good due to efficient implementations of MPI on these systems.
Also, when an SMS parallelized model runs successfully on one system, it can
easily be ported and run on another computing platform. For example, it took only
two hours to port the ROMS model, parallelized for Alpha-Linux, to an SGI Origin
system.

SMS provides several techniques to optimize models for high performance. One is
to make architecture-specific optimizations in the lower layer of SMS. During a
recent FSL procurement, one vendor replaced the MPI implementation of key SMS
routines with the vendor’s native communications package to improve performance.
Since these changes were made at a lower layer of SMS, no changes to the model
codes were necessary.

SMS also supports other performance optimizations of interprocessor
communications including array aggregation and halo region computations. Array
aggregation permits multiple model variables to be combined into a single
communications call to reduce message-passing latency. SMS also allows the user,
via directive, to perform computations in the halo region in order to reduce
communication. Further details regarding these communication optimizations are
discussed in the SMS Users Guide [11] and overview paper [6].

Performance optimizations have also been built into SMS I/O operations. By
default, all I/O is handled by a single processor. Input data are read by this node
and then scattered to the other processors. Similarly, decomposed output data are
gathered by a single process and then written asynchronously. Since atmospheric
models typically output forecasts several times during a model run, these operations
can significantly affect the overall performance and should be done efficiently.

To improve performance, several options can be specified at run-time via
environment variable. One option, illustrated in Figure 5, allows the user to
dedicate multiple output processors to gather and output these data asynchronously.
This allows compute operations to continue at the same time data are written to

ecmwf.doc submitted to World Scientific : 4/23/01 : 8:51 AM 14/18

disk. The use of multiple output processors has been shown to improve model
performance by up to 25% [10].

Server
Process

Disk

Cache
Processes

P1 P2

P4

P3

P5 P6

Computational
Processes

P7 P8

P10

P9

P11 P12

Figure 5. An illustration of SMS output when cache processes and a server process are used. SMS
output operations pass data from the computational domain to the cache processes. Data are re-ordered
on the cache processes before being passed through the server process to disk.

Another output option allows the user to specify that no gathering of decomposed
arrays be done; instead each processor writes out its section of the arrays to disk in
separate files. This option allows users to take advantage of high-performance
parallel I/O available on some systems including the IBM SP2. After output cycles
are complete, post-processing routines can be run as a separate operation to
reassemble the array fragments.

5.2 Eta Model Parallelization

As a high-level software tool, SMS requires extra computations to maintain data
structures that encapsulate low-level MPI functionality that could lead to potential
performance degradation. While a number of performance studies have been done
using SMS in recent years, no study has been done to measure the cost of the SMS
overhead. To measure this impact, a performance comparison was done between
the hand-coded MPI based version of the Eta model running operationally at NCEP,

ecmwf.doc submitted to World Scientific : 4/23/01 : 8:51 AM 15/18

and the same Eta model parallelized using SMS. The MPI Eta model was
considered a good candidate for fair comparison since it is an operational model and
has been optimized for high performance on the IBM SP2. Performance
optimizations of NCEP’s Eta model include the use of IBM’s parallel I/O capability
which offers fast asynchronous output of intermediate results during the course of a
model run.

To accomplish parallelization, the MPI Eta code was reverse engineered to return
the code to its original serial form. This code was then parallelized using SMS.
Code changes included restoring the original global loop bounds found in the serial
code, removing MPI-based communications routines, and restoring array
declarations. Fewer than 200 directives were added to the 19,000 line Eta model
during SMS parallelization. To ensure correctness of parallelization, generated
output files were bit-wise exact compared for both serial and parallel runs.

Table 1: Eta model performance for MPI-Eta and SMS-Eta run on NCEP’s IBM SP-2. Times are for a
two-hour model run.

Processors Time Speedup Efficiency

24 78 1.00 1.00
32 59 1.32 0.99
48 45 1.73 0.87
88 27 2.88 0.79

After parallelization was complete, performance studies were done to compare SMS
Eta to the handed-coded MPI Eta. In these tests, identical run-times were measured
on 88 processors of NCEP’s IBM SP2 for a two hour model run. Further tests on
FSL’s Alpha Linux cluster, shown in Table 1, illustrate good performance and
scaling. Further analysis of these performance results is planned. However, these
results demonstrate that SMS can be used to speed and simplify parallelization,
improve code readability, and allow the user to maintain a single source, without
incurring significant performance overhead.

6 Conclusion and Future Work

A directive-based approach to parallelization (SMS) has been developed that can be
used for both shared and distributed memory platforms. This method provides
general, high level, comment-based directives that allow complete retention of the
serial code. The code is portable to a variety of hardware platforms. This

ecmwf.doc submitted to World Scientific : 4/23/01 : 8:51 AM 16/18

parallelization approach can be used to develop portable parallel code on multiple
platforms and achieve good performance.

As we continue to parallelize more atmospheric and ocean models additional
features are being added to SMS to enhance its usefulness. Parallelization of these
models for MPPs has driven the development of SMS for the last ten years. Based
on this experience, we have developed a tool that significantly decreases the time
required to parallelize models. Further, we offer a simple, flexible user interface,
provide tools that permit partial parallelization, simplify debugging and can verify
the correctness of the model results exactly. In addition, our experience in working
with a variety of computing platforms has allowed us to develop a tool that provides
flexible high-performance portable solutions that are competitive with hand-coded
vendor specific solutions. We have also demonstrated in the parallelization of
NCEP’s Eta model that the SMS solution performs as well as the MPI based
operational version of the code.

6.1 Future Work

SMS currently supports the analysis and translation of Fortran 77 with added
support for some commonly used Fortran 90 constructs such as allocatable arrays,
limited module support, and array syntax. However, full support is planned for all
of the Fortran 90 language including array sections, derived types, and modules.
Another upgrade will enable the PPP translator to generate OpenMP code. Further,
for state-the-of-art machines that consist of clusters of SMPs, a parallel code that
implements tasking "within the box" using OpenMP and message passing "between
the boxes" using MPI may be optimal. The PPP translator could be designed to
generate both message passing and micro tasking parallel code.

We would also like to reduce the dependence analysis and code modification time
(insertion of directives) required to parallelize a model. Development has begun on
a tool, called autogen, to analyze the user code and automatically insert SMS
directives into the serial code. A typical model (20-30K source lines) parallelized
using SMS requires the insertion of about 200 directives into the code. Autogen
could automatically generate the two most common SMS directives (csms$parallel
and csms$distribute) that account for roughly half of the directives users must add
to the serial code.

As the analysis capabilities of this tool grow, we expect to further reduce the
number of directives that must be inserted by the user. However, one limitation of
autogen is that it does not provide interprocedural analysis of the code. Therefore,
we would like to combine SMS code translation capabilities with a semi-automatic
dependence analysis tool. This tool would automatically insert SMS directives into

ecmwf.doc submitted to World Scientific : 4/23/01 : 8:51 AM 17/18

the serial code, from which a parallel version could be generated using PPP in order
to further simplify parallelization.

References

1. Baillie, C., MacDonald A.E. and Lee J.L., QNH: A numerical Weather
Prediction Model developed for MPPs. International Conference HPCN
Challenges in Telecomp and Telecom: Parallel Simulation of Complex Systems
and Large Scale Applications. Delft, The Netherlands (1996).

2. Benjamin, S., Brown J., Brundage K., Kim D., Schwartz B., Smirnova T., and
Smith T., The Operational RUC-2, 16th Conference on Weather Analysis and
Forecasting, AMS, Phoenix, (1998) pp.249-252.

3. Edwards, J., Snook J., and Christidis Z., Forecasting for the 1996 Summer
Olympic Games with the NNT-RAMS Parallel Model, 13th International
Information and Interactive Systems for Meteorology, Oceanography and
Hydrology, Long Beach, CA., American Meteorological Society, (1997) pp.19-
21.

4. Frumkin, M., Jin H., and Yan J., Implementation of NAS Parallel Benchmarks
in High Performance FORTRAN, NAS Technical Report NAS-98-009, NASA
Ames Research Center, Moffett Field, CA (1998).

5. Govett, M., Edwards J., Hart L., Henderson T., and Schaffer T., SMS
Reference Manual, http://www-ad.fsl.noaa.gov/ac/SMS_ReferenceGuide.pdf
(1999).

6. Govett, M., Edwards J., Hart L., Henderson T., and Schaffer D., SMS: A
Directive-Based Parallelization Approach for Shared and Distributed Memory
High Performance Computers, http://www-
ad.fsl.noaa.gov/ac/SMS_Overview.pdf (2001).

7. Gray, R., Heuring, V., Levi, S., Sloane, A., and Waite W., Eli, A Flexible
Compiler Construction System., Communications of the ACM 35 (1992)
pp.121-131.

8. Haidvogel, D.B., Arango H.G., Hedstrom K., Beckman A., Malanotte-Rizzoli
P., and Shchepetkin A.F., Model Evaluation Experiments in the North Atlantic
Basin: Simulations in Nonlinear Terrain-Following Coordinates, Dyn. Atmos.
Oceans 32 (2000) pp.239-281.

9. Hart, L., Henderson T., and Rodriguez B., An MPI Based Scalable Runtime
System: I/O Support for a Grid Library, http://www-
ad.fsl.noaa.gov/ac/hartLocal/io.html (1995).

10. Henderson, T., Baillie C., Benjamin S., Black T., Bleck R., Carr G., Hart L.,
Govett M., Marroquin A., Middlecoff J., and Rodriguez B., Progress Toward
Demonstrating Operational Capability of Massively Parallel Processors at
Forecast Systems Laboratory, Proceedings of the Sixth ECMWF Workshop on
the Use of Parallel Processors in Meteorology, European Centre for Medium
Range Weather Forecasts, Reading, England (1994).

http://www-ad.fsl.noaa.gov/ac/SMS_ReferenceGuide.pdf
http://www-ad.fsl.noaa.gov/ac/SMS_Overview.pdf
http://www-ad.fsl.noaa.gov/ac/SMS_Overview.pdf
http://www-ad.fsl.noaa.gov/ac/hartLocal/io.html
http://www-ad.fsl.noaa.gov/ac/hartLocal/io.html

ecmwf.doc submitted to World Scientific : 4/23/01 : 8:51 AM 18/18

11. Henderson, T, Schaffer D., Govett M., and Hart L., SMS User's Guide,
http://www-ad.fsl.noaa.gov/ac/SMS_UsersGuide.pdf (2001).

12. Hwang, K., Advanced Computer Architecture: Parallelism, Scalability, and
Programmability, McGraw Hill, Inc, (1993) pp.157-256.

13. Ierotheou, C.S., Johnson S.P., Cross M., and Leggett P.F., Computer aided
parallelization tools (CAPTools) - Conceptual Overview and Performance on
the Parallelization of Structured Mesh Codes, Parallel Computing 22 (1996)
pp.163-195.

14. Kothari, S., and Kim Y., Parallel Agent for Atmospheric Models, Proceedings
of the Symposium on Regional Weather Prediction on Parallel Computing
Environments, (1997) pp.287-294.

15. Liou, C.S., Chen J., Terng C., Wang F., Fong C., Rosmond T., Kuo H., Shiao
C., and Cheng M., The Second-Generation Global Forecast System at the
Central Weather Bureau in Taiwan, Weather and Forecasting 12, pp.653-663
(1997).

16. MacDonald, A.E., Lee J.L., and Xie Y., QNH: Design and Test of a Quasi Non-
hydrostatic Model for Mesoscale Weather Prediction. Monthly Weather Review
128 (2000) pp.1016-1036.

17. Mesinger, F., The Eta Regional Model and its Performance at the U.S. National
Centers for Environmental Prediction. International Workshop on Limited-area
and Variable Resolution Models, Beijing, China, 23-28 October 1995; WMO,
Geneva, PWPR Rep. Ser. No. 7 WMO/TD 699 (1995) pp.42-51.

18. Michalakes, J., RSL: A Parallel Runtime System Library for Regular Grid
Finite Difference Models using Multiple Nests, Tech. Rep. ANL/MCS-TM-197,
Mathematics and Computer Science Division, Argonne National Laboratory,
Argonne, Illinois (1994).

19. Michalakes, J., FLIC: A Translator for Same-Source Parallel Implementation of
Regular Grid Applications, Tech. Rep. ANL/MCS-TM-223, Mathematics and
Computer Science Division, Argonne National Laboratory, Argonne, Illinois
(1997).

20. Michalakes, J., Dudhia J., Gill D., Klemp J. and Shamarock W., Design of a
Next Generation Regional Weather Research and Forecast Model, Proceedings
of the Eighth ECMWF Workshop on the Use of Parallel Processors in
Meteorology, European Centre for Medium Range Weather Forecasts, Reading,
England (1998).

21. Ngo, T., Snyder L., and Chamberlain B., Portable Performance of Data Parallel
Languages, Supercomputing 97 Conference, San Jose, CA (1997).

22. Rodriguez, B., Hart L., and Henderson T., Parallelizing Operation Weather
Forecast Models for Portable and Fast Execution, Journal of Parallel and
Distributed Computing 37 (1996) pp.159-170.

23. The Portland Group, Parallel Fortran for HP Systems,
http://www.npac.syr.edu/hpfa/bibl.html(1999).

http://www-ad.fsl.noaa.gov/ac/SMS_UsersGuide.pdf
http://www.npac.syr.edu/hpfa/bibl.html

	1 Introduction
	2 Approaches to Parallelization
	3 Overview of SMS
	4 Code Parallelization using SMS
	4.1 Code Generation and Run-Time Options
	4.2 Advanced Parallelization Support

	5 Performance and Portability
	5.1 SMS Optimizations
	5.2 Eta Model Parallelization

	6 Conclusion and Future Work
	6.1 Future Work

	References

